The Control Strategy Development for Fuel Economy of a Parallel Hydraulic Hybrid Vehicle
張文順、陳志鏗
E-mail: 361221@mail.dyu.edu.tw

ABSTRACT
Hybrid Vehicle (HV) is a new technology in automotive industry. Hydraulic Hybrid Vehicles (HHVs) can participate in reducing fuel consumption and environmental protection. HHVs are purely based on hydraulic hybrid technology and hydraulic components which are used widely day by day. Hydraulic hybrid vehicle has some advantages which the other kinds of HV don't have: high power density, not flammable, lightweight and so on. However, there are some limitations: low energy density, no power grid plug-in capability. Anyway, HHV should be considered as a good technology for fuel economy and environment. Based on Matlab/Simulink environment, especially the SimScape Toolbox inside, Parallel Hydraulic Hybrid Vehicle (PHHV) simulation model for the new system is developed in this thesis. The simulation models include all the main system components such as the vehicle, the oil tank, the accumulators, the hydraulic pump/motor and the internal combustion engine (ICE). The power management is implemented based on available hydraulic power and ICE's power. The main purpose is to evaluate the average fuel economy for the HHV with the added hydraulic hybrid system, then to establish the control strategy development for fuel economy of a PHHV. The models are tested basing on the urban driving cycles. The simulations results with various driving cycles and control strategies have shown significant improvement in the fuel economy for the constructed model of PHHV.

Keywords : Parallel Hydraulic Hybrid Vehicle、IC Engine、Accumulator、Pump/Motor、PHHV Simulation、PHHV Control Strategy

Table of Contents
Inside Front Cover Signature Page ABSTRACT .. iii 中文摘要 ... iv
ACKNOWLEDGEMENTS .. v TABLE OF CONTENTS .. vi
LIST OF FIGURES .. ix List of TABLES ... xiii
Chapter I. INTRODUCTION 1 1.1 Energy Demand ... 1 1.2 Environmental Effects Of Fossil Fuel Use 3 1.3 Imperative Need Of Hybrid Technology 4 1.4 Literature Review ... 5 1.5 Statement of the problem and Objective 6 1.6 Approach .. 7
Chapter II. Fundamentals of Hydraulic Hybrid Vehicle 9 2.1 Hybrid Vehicle .. 9 2.1.1 Historic Brief of Hybrid Vehicle 9 2.1.2 Classifications of hybrid vehicle 10
 2.2 Hydraulic Hybrid Vehicle 13 2.2.1 Fundamental of Hydraulic Hybrid Vehicle 13 2.2.2 Parallel HHV ... 15 2.2.3 Series HHV ... 17 2.2.4 Power split HHV .. 19
Chapter III. ANALYSIS AND MODELING OF PHHV 21 3.1 Structure of PHHV .. 21 3.1.1 Proposed Structure 21 3.1.2 Combustion Engine 23 3.1.3 Vehicle System ... 29 3.1.4 Hydraulic Pump/Motor 32 3.1.5 Accumulator .. 36 3.1.6 Mechanical coupler 41 3.2 Modeling of PHHV ... 43 3.2.1 Internal Combustion Engine Model 45 3.2.2 Vehicle Dynamics model 47 3.2.3 Hydraulic Pump/Motor Model 49 3.2.4 Accumulator Model 52 3.2.5 Transmission .. 54 3.2.6 Hydraulic auxiliary component blocks 55
Chapter IV. CONTROL STRATEGY AND SIMULATION FOR FUEL ECONOMY OF A PHHV ... 58 4.1 Control strategy .. 58 4.1.1 Rule-based power management strategy 59 4.1.2 Improved control strategy 62 4.2 Simulation of PHHV 63 4.2.1 Engine Throttle Controller 65 4.2.2 Regenerative Braking Performance 68 4.3 Optimization of operating power engine for fuel economy ... 71 4.3.1 Case Study 1-The 1st driving cycle 71 4.3.2 Case Study 2-The 2nd driving cycle 74 4.3.3 Case Study 3-The 3rd driving cycle 77
Chapter V. CONCLUSION .. 81 REFERENCES ... 83

REFERENCES