ABSTRACT

I would like to express my warmest gratitude to all people who in one way or another have helped me in the completion of this thesis. I wish to convey my sincere thanks to my advisor Professor Ching-Hwa Lee (in Department of Environmental Engineering – Dayeh University), who not only gave me an opportunity to carry out this research in the area of my interest but also supported and cared for my daily life in Taiwan. Moreover, I must thank my dear friends in Lab 801 who have created the best atmosphere for me during the 2-year study in Taiwan. The most and above all, I missed my family while living far from them but they always encouraged me to finish my work.

Keywords:

Table of Contents

CONTENTS
ABSTRACT…………………………………………………………………………….1 中文摘要…………………………………………………………………………….v ACKNOWLEDGMENTS…………………………………………………...vii CONTENTS……………………………………………………………..…………….viii LIST OF FIGURES……………………………………………..……………….....x LIST OF TABLES……………………………………………….…………………….xii LIST OF ABBREVIATION…………………………………………….…………….xiv CHAPTER 1. INTRODUCTION ... 1 1.1 Background ... 1 1.2 Objectives ... 2 CHAPTER 2. LITERATURE REVIEW ... 3 2.1 Leaching process ... 3 2.1.1 Definition of leaching process .. 3 2.1.2 General types of leaching process ... 4 2.1.2.1 Leaching process in agriculture ... 4 2.1.2.2 Bioleaching .. 5 2.1.2.3 Leaching in metallurgy .. 5 2.1.2.4 Leaching in chemistry .. 9 2.2 Overview of silver, copper and indium .. 10 2.2.1 Overview of silver ... 10 2.2.2 Overview of copper ... 11 2.2.3 Overview of indium .. 12 2.3 Modeling in leaching processes .. 12 2.4 Nonlinear regression analysis in SPSS software... 21 2.4.1 SPSS software ... 21 2.4.2 Nonlinear regression analysis .. 22 CHAPTER 3. STUDY METHOD ... 23 3.1 Development of leaching model .. 23 3.2 Leaching data collection .. 26 3.2.1 Leaching data of silver (Ag) .. 26 3.2.2 Leaching data of copper (Cu) .. 27 3.2.3 Leaching data of indium (In) ... 27 3.3 Optimization of leaching model ... 28 CHAPTER 4. RESULTS AND DISCUSSION .. 29 4.1 Optimal leaching model of silver .. 29 4.1.1 Leaching data of silver .. 29 4.1.2 Modeling of silver leaching by nonlinear regression program.............................. 32 4.2 Optimal leaching model of copper ... 70 4.2.1 Leaching data of copper
Table 4-1: Leaching yield of silver with thiourea

Table 4-2: The input data and the best fitting result of Model 1 with leaching data of silver

Table 4-3: The input data and the best fitting result of

Table 4-4: The input data and the best fitting result of

Table 4-5: The input data and the best fitting result of

Table 4-6: The input data and the best fitting result of

Table 4-7: The input data and the best fitting result of

Table 4-8: The input data and the best fitting result of Model 5 with leaching data of silver by SPSS nonlinear regression program

Table 4-9: The input data and the best fitting result of Model 6 with leaching data of silver by SPSS nonlinear regression program

Table 4-10: The values of

Table 4-11: Leaching yield of copper with sulfuric acid

Table 4-12: A comparison between experimental and predicted leaching yield of copper by Model 1

Table 4-13: The input data and the best fitting result of Model

Figure 4-1: A comparison between experimental and predicted leaching yield of silver by Model 1

Figure 4-2: A comparison between experimental and predicted leaching yield of silver by Model 2

Figure 4-3: A comparison between experimental and predicted leaching yield of silver by Model 3

Figure 4-4: A comparison between experimental and predicted leaching yield of silver by Model 4

Figure 4-5: A comparison between experimental and predicted leaching yield of silver by Model 5

Figure 4-6: A comparison between experimental and predicted leaching yield of silver by Model 6

Figure 4-7: A comparison between experimental and predicted leaching yield of silver by Model 7

Figure 4-8: A comparison between experimental and predicted leaching yield of copper by Model 1

Figure 4-9: A comparison between experimental and predicted leaching yield of copper by Model 2

Figure 4-10: A comparison between experimental and predicted leaching yield of copper by Model 3

Figure 4-11: A comparison between experimental and predicted leaching yield of copper by Model 4

Figure 4-12: A comparison between experimental and predicted leaching yield of copper by Model 5

Figure 4-13: A comparison between experimental and predicted leaching yield of copper by Model 6

Figure 4-14: A comparison between experimental and predicted leaching yield of copper by Model 7

Figure 4-15: A comparison between experimental and predicted leaching yield of indium by Model 1

Figure 4-16: A comparison between experimental and predicted leaching yield of indium by Model 2

Figure 4-17: A comparison between experimental and predicted leaching yield of indium by Model 3

Figure 4-18: A comparison between experimental and predicted leaching yield of indium by Model 4

Figure 4-19: A comparison between experimental and predicted leaching yield of indium by Model 5

Figure 4-20: A comparison between experimental and predicted leaching yield of indium by Model 7

40. M.C. Ruiz, E. Gallardo, R. Padilla, Copper extraction from white metal by pressure leaching in H2SO4-FeSO4-O2, Journal of Hydrometallurgy, 2009, 100, 50-55.
