車輛防撞系統模擬與實車測試
金仲浩、陳志銘

摘 要
本研究主要是建立一套防撞警示系統，由系統判定車輛本身有無立即性的危險，透過燈號及聲響提醒駕駛人，必要時進行
自動煞車控制。透過 CARSim 模擬軟體實驗，並將毫米波雷達裝置在車頭，結合 MotoTron 將控制器運用在實車上作控制，
藉由實車測試驗證控制器之成效。在防撞控制器設計方面，吾人以三家車廠的法則為安全距離估測器，當實際距離小於安
全距離即觸發輕煞，當預估之碰撞時間小於 0.5 秒即觸發重煞及 EBD。同時加入彎道防撞策略，讓控制器可辨認前車是否和
本車同車道，進而觸發自動煞車。並建立三種行車常遇到的危險狀況，以了解三家法則之特性，選擇出較適合在實車測試
之法則，作為實車測試之控制器。在實車測試方面，針對實驗車進行改裝，加裝雷達並對煞車系統做改裝，使作動器可接
受控制而進行自動煞車，將所建立之控制程式燒錄至 MotoTron 車用 ECU 上，透過實車測試觀察控制器在於實車控制成效
，並確認煞車系統能夠正確執行其命令，避免失控，使之保有高度的安全性。

關鍵詞：主動煞車、防撞控制器、毫米波雷達

目錄
中文摘要 ... iii
ABSTRACT ... iv
誌謝 ... v
目錄 ... vi
圖目錄 ... viii
表目錄 ... xiii
第一章 緒論 ... 1
 1.1 前言 ... 1
 1.2 文獻回顧 ... 3
 1.3 研究動機與目的 ... 5
 1.4 本文架構 ... 6
第二章 防撞警示控制器設計 .. 8
 2.1 模擬環境建立 ... 8
 2.2 煞車安全距離法則 .. 11
 2.2.1 Mazda 安全距離法則 .. 11
 2.2.2 Honda 安全距離法則 ... 13
 2.3 防撞控制器設計 ... 18
 2.4 電腦模擬結果 ... 25
 2.4.1 CASE 1 前車靜止防追撞 ... 26
 2.4.2 CASE 2 前車急煞防追撞 ... 36
 2.4.3 CASE 3 彎道防追撞 ... 38
第三章 實車煞車系統改裝介紹 ... 48
 3.1 煞車系統元件介紹 ... 57
 3.2 煞車系統油路介紹 ... 58
 3.3 雷達元件介紹 .. 63
第四章 實車測試 ... 68
 4.1 實驗架構 ... 68
 4.2 實驗場地介紹與安全措施 ... 70
 4.3 雷達特性測試 ... 72
 4.3.1 雷達距離測試 ... 73
 4.3.2 無線傳輸測試 ... 74
 4.3.3 ISO 測試 ... 75
實車測試

前車靜止

前車急煞 車速 30 km/h

前車急煞 車速 40 km/h

第五章 結論

參考文獻

[1] 中華民國內政部統計處, 99年致人傷亡之道路交通事故統計。

[2] 張光仁, 日本 ASV 之發展現況, 「車輛研測資訊」, 第四十三期, 第 22-27 頁。

