Shape Design of Vehicle Frontal Area for Reducing Pedestrian Injuries

戴紹峰、鄧作樑、梁卓中

E-mail: 345426@mail.dyu.edu.tw

ABSTRACT

All efforts to improve safety devices focus on enhancing safety features for occupants. However, vehicle safety should not just focus on vehicle occupant safety. That is, protecting pedestrians is an important field in traffic safety. To assess the degree of pedestrian protection of a vehicle, it is necessary to develop an analysis model for vehicle-pedestrian collision. This study adopts the multi-body dynamics theory and constructs a vehicle-pedestrian collision model by using the MADYMO software. It also details the model used to analyze the impact behavior of the pedestrian model to the vehicle. To verify the accuracy of the proposed vehicle-pedestrian collision model, the current results are compared with those obtained from experimental tests and the results of other scholars' study.

In general, appearance and performance was primarily considered on vehicle design. The pedestrian safety is not considered enough in appearance design of car. In the vehicle-pedestrian collision event, most of pedestrian injuries are attributed to impact of car fronts. The car appearance directly affects the impacted body part and severity of pedestrian injury. To protect and reduce pedestrian injuries, the front end of vehicle must be attached great importance during the development of vehicle design. Therefore, this study discusses the effect of front-end appearance of the car on the pedestrian injuries during impact event. The parameters of front end of the car include the length of hood, the height of the hood leading edge and the prominence level of bumper. Finally, the design guidelines of front end of the car are proposed based on the analysis results presented herein. And the friendliness of front end of the car is designed for reducing the pedestrian injuries. The multi-body models of car and pedestrian and design guidelines obtained in this study may serve as a useful reference for car manufactures and researchers with appearance design of car.

Keywords : Pedestrian、Injury、front end of the car、multi-body、MADYMO

Table of Contents

第一章 前言1 1.1 研究動機1 1.2 文獻回顧3 1.3 研究目的7 1.4 論文架構8 第二章 行人安全防護發展現況13 2.1 行人碰撞安全評估方法13 2.2 行人碰撞損傷15 2.2.1 頭部傷害15 2.2.2 骨盆傷害16 2.2.3 大腿、小腿傷害16 2.3 行人安全防護裝置17 2.4 行人模型19 2.4.1 行人人偶19 2.4.2 行人數值模型20 第三章 行人碰撞軌跡與損傷分析31 3.1 多體剛性模型32 3.1.1 行人模型32 3.1.2 車輛模型33 3.1.3 車輛-行人碰撞條件33 3.2 車輛與行人碰撞模擬分析34 3.2.1 行人碰撞之軌跡分析34 3.2.2 行人碰撞之損傷分析35 3.3 行人碰撞軌跡與損傷之驗證36 3.3.1 行人碰撞軌跡之驗證36 3.3.2 行人碰撞損傷之驗證39 第四章 車頭外形設計與行人損傷分析63 4.1 車頭外形對行人損傷之影響分析64 4.1.1 引擎蓋前緣離地高度對行人損傷的影響 65 4.1.2 引擎蓋長度對行人損傷的影響66 4.1.3 保險桿凸出量對行人損傷的影響67 4.2 車頭外形設計與行人損傷分析68 第五章 結論與未來展望81 參考文獻83

REFERENCES

References:

8. 黎中堅, 鄧作樑, "行人有限元素模型之建立", 大葉大學機械與自動化工程學系研究所碩士學位論文, 2007。

10. 霍弘偉, "首創行人安全系統, 保證車內外人員安全", 取自 http://news.bitauto.com/, 2011.03.09。

