The effect of additives on the production of secondary metabolites and antioxidant properties of Antrodia cinnamomea by grain solid-state culture. The cultures were under various conditions, and at a period of 30 or 45 days. Grains of Coix lacryma-jobi, wheat, and pearl barley were used as basic medium respectively. The highest yield of polysaccharide and triterpenes produced by A. cinnamomea cultured on Coix medium were 23.01 mg/ml and 10.63 %, respectively. At 45 day, the highest yield of polysaccharide derived from A. cinnamomea cultured on pearl barley and wheat medium were 60.80 and 31.48 mg/ml, respectively. And the highest yield of triterpenes derived from A. cinnamomea cultured on pearl barley and wheat medium were 10.11 and 0.05 %, respectively. Culturing at 30 ℃ for 60 days, the highest yield of polysaccharide and triterpenes obtained on wheat and pearl barley media of A. cinnamomea were 64.12 mg/ml and 17.59 %, respectively. For different additives on culturing A. cinnamomea, the highest polysaccharide yield was 68.66 mg/ml when 0.5 % (w/w) CaCl2 was added to pearl barley medium at 30 day of culture. And the highest triterpenes obtained was 16.65 %, which was produced at 60 day by A. cinnamomea when 0.5 % (w/w) chitosan was used as additive in pearl barley medium. When Chinese medicinal herbs were added to culture media, the highest polysaccharide yielded 70.90 mg/ml on wheat medium with 1 % (w/w) Magnolia officinalis at 15 day. And the highest triterpenes produced was 33.72 % on pearl barley medium supplemented with 1 % (w/w) Perilla frutescens at 30 day culture of A. cinnamomea. The highest scavenging ability on DPPH radical of methanolic vi extract (10 mg/ml) was 95.47 % obtained from culturing A. cinnamomea on Coix medium added with 0.5% (w/w) Ocimum basilicum at 15 day. The highest chelating capability on ferrous ions of methanolic extract (20 mg/ml) was 95.75% derived from adding 0.5 % (w/w) chitosan on wheat medium for culturing A. cinnamomea 60 days. And the highest reducing powers of methanolic extract (10 mg/ml) was 2.957 yielded from A. cinnamomea when culturing on pearl barley medium added with 0.5% (w/w) Piper betle at 60 day.

Keywords: Antrodia cinnamomea, grain solid-state culture, polysaccharide, triterpenoid, antioxidant property
力之測定

二、螯合亞鐵離子

三、還原力

四、總抗氧化力

力

五、清除超氧陰離子能力測

定

第四節 固態發酵培養

養

質

第二節 實驗材料

科

藥

成品

法

化

備

實

析

錄

獻

圖目錄

實驗設計

實驗材料

實驗方法

實驗結果

實驗討論

實驗結果

實驗討論
的小麥培養基培養 其天發酵物甲醇萃取液濃度 10 mg/ml 的螯合亞鐵離子能力。圖 22、25℃下樟芝於添加不同中草藥的薏仁培養基培養 60 天其發酵物甲醇萃取液濃度 10 mg/ml 的還原力。圖 23、25℃下樟芝於添加不同中草藥的裸麥培養基培養 60 天其發酵物甲醇萃取液濃度 10 mg/ml 的還原力。圖 24、25℃下樟芝於添加不同中草藥的小麥培養基培養 60 天其發酵物甲醇萃取液濃度 10 mg/ml 的還原力。圖 25、25℃下樟芝於添加不同中草藥的薏仁培養基培養 60 天其發酵物甲醇萃取液濃度 10 mg/ml 的還原力。圖 26、25℃下樟芝於添加不同中草藥的薏仁培養基培養 60 天其發酵物甲醇萃取液濃度 10 mg/ml 的還原力。圖 27、25℃下樟芝於添加不同中草藥的小麥培養基培養 60 天其發酵物甲醇萃取液濃度 10 mg/ml 的還原力。表目录 表一、氧化對人體的可能的傷害。表二、不同溫度下薏仁培養樟芝多醣產量的變化。表三、不同溫度下薏仁培養樟芝多醣產量的變化。表四、不同溫度下薏仁培養樟芝多醣產量的變化。表五、不同溫度下薏仁培養樟芝多醣產量的變化。表六、不同溫度下薏仁培養樟芝多醣產量的變化。表七、不同溫度下薏仁培養樟芝多醣產量的變化。表八、不同溫度下薏仁培養樟芝多醣產量的變化。表九、不同溫度下薏仁培養樟芝多醣產量的變化。表十、不同溫度下薏仁培養樟芝多醣產量的變化。表十一、不同溫度下薏仁培養樟芝多醣產量的變化。表十二、不同溫度下薏仁培養樟芝多醣產量的變化。表十三、不同溫度下薏仁培養樟芝多醣產量的變化。表十四、不同溫度下薏仁培養樟芝多醣產量的變化。表十五、不同溫度下薏仁培養樟芝多醣產量的變化。表十六、不同溫度下薏仁培養樟芝多醣產量的變化。表十七、不同溫度下薏仁培養樟芝多醣產量的變化。表十八、不同溫度下薏仁培養樟芝多醣產量的變化。表十九、不同溫度下薏仁培養樟芝多醣產量的變化。表二十、不同溫度下薏仁培養樟芝多醣產量的變化。表二十一、不同溫度下薏仁培養樟芝多醣產量的變化。表二十二、不同溫度下薏仁培養樟芝多醣產量的變化。表二十三、不同溫度下薏仁培養樟芝多醣產量的變化。表二十四、不同溫度下薏仁培養樟芝多醣產量的變化。表二十五、不同溫度下薏仁培養樟芝多醣產量的變化。表二十六、不同溫度下薏仁培養樟芝多醣產量的變化。表二十七、不同溫度下薏仁培養樟芝多醣產量的變化。表二十八、不同溫度下薏仁培養樟芝多醣產量的變化。表二十九、不同溫度下薏仁培養樟芝多醣產量的變化。表三十、不同溫度下薏仁培養樟芝多醣產量的變化。表三十一、不同溫度下薏仁培養樟芝多醣產量的變化。表三十二、不同溫度下薏仁培養樟芝多醣產量的變化。表三十三、不同溫度下薏仁培養樟芝多醣產量的變化。表三十四、不同溫度下薏仁培養樟芝多醣產量的變化。表三十五、不同溫度下薏仁培養樟芝多醣產量的變化。表三十六、不同溫度下薏仁培養樟芝多醣產量的變化。表三十七、不同溫度下薏仁培養樟芝多醣產量的變化。表三十八、不同溫度下薏仁培養樟芝多醣產量的變化。表三十九、不同溫度下薏仁培養樟芝多醣產量的變化。表四十、不同溫度下薏仁培養樟芝多醣產量的變化。表四十一、不同溫度下薏仁培養樟芝多醣產量的變化。表四十二、不同溫度下薏仁培養樟芝多醣產量的變化。表四十三、不同溫度下薏仁培養樟芝多醣產量的變化。表四十四、不同溫度下薏仁培養樟芝多醣產量的變化。表四十五、不同溫度下薏仁培養樟芝多醣產量的變化。表四十六、不同溫度下薏仁培養樟芝多醣產量的變化。表四十七、不同溫度下薏仁培養樟芝多醣產量的變化。表四十八、不同溫度下薏仁培養樟芝多醣產量的變化。表四十九、不同溫度下薏仁培養樟芝多醣產量的變化。表五十、不同溫度下薏仁培養樟芝多醣產量的變化。
[31x194](3-ethylbenzthiazoline-6-sulfonic acid): rationale, application, and limitation. Analytical biochemistry 275:217-223.


mediated through suppression of the MAPK signaling pathway. Food and Chemical Toxicology 49:290–298. 67. Yang, S.W., Shen, Y.C., and


and antioxidant supplementation. Toxicology 189: 41-54. 65. Williams, W.B., Cuvelier, M.E., and Berset, C., 1995. Use of a free radical method to


autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry 40:945-948. 60. Skaper, S.D., Fabris, M., Ferrari,


components and oxygen supply on the mycelial growth and bioactive metabolites production in submerged culture of A. cinnamomea. Process


products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Japanese Journal of Nutrition

extraction and development of antitumoractive polysaccharides from medicinal mushrooms in Japan. International Journal of Medical Mushrooms


Antrodia camphorate. Proceedings of 3rd International Conference on Mushroom Biology and Mushroom Products, 275-283. 49. Jacob, R.A.,


42. Dinis, T.C.P., Madeira, V.M.C., and Almeida, L.M., 1994. Action of phenolic
