ABSTRACT

The purpose of this study is to establish a dynamic simulation and control system for intelligent vehicle driving and handling performance evaluation. By controlling the wheel motor drive and brake and independent steer control motor, the vehicle can have better mobility and safer handling condition. When the vehicle is straight-line driving, the slip and skid control of wheels were used to ensure the wheel torque management to has stabled drive behavior in case of wheel slip or lock conditions. The wheel speed difference, vehicle speed, yaw rate, side slip angle, and lateral acceleration during the turning maneuver conditions were used for wheel motor controller inputs for the wheel motor controller which gives commands to control each wheel speed to reduce the tire abrasive and vehicle unstable conditions. This study has constructed the plant and controller simulation methodology which integrate the control strategies including the traction control, antilock brake control, active steer, wheel motor torque management, and the Four-Wheel Steer, (4WS) control system to evaluate and improve the vehicle drive and handling performance. The active steer control system can adjust the steer gear ratio of front and rear wheels and the ratio between them according to the vehicle speed, steering wheel angle input and the vehicle yaw rate, lateral acceleration, and side slip angle were feedbacked for closed loop control to ensure safer turning maneuver. The by-wire controlled 4WS electric vehicle driving and handling control modules were established by using dynamic simulation program Simulink and the embedded controller Motohawk to form a Hardware-in-Loop, (HIL) environment. The control and design parameters were varied and validated under different operating conditions to assure better electric vehicle handling performance and longer cruise range. This study can integrate and increase the research and development capability in vehicle stability control system design area including mechanical, electronic control, computer, and communication which can then in connect with the world advanced vehicle industries and enhance the competition ability in the future intelligent vehicle electronics market.

Keywords: Intelligent Vehicle Drive-by-Wire Control, Vehicle Drive and Handling Dynamic Simulation Control System, Hardware-in-Loop Simulation, Four Wheel Steer Embedded Control Module
動平行停車模組...............................67 3.2.4 牽引力控制模組與電子模擬輸出差速器模組測試...................72
第四章 四輪電動線傳驅動轉向硬體迴路平台...........................77 4.1 線傳轉向平台周邊硬體與實驗設備介紹.............................77 4.1.1 MotoHawk硬體介紹..77 4.2 線傳硬體平台架構...81 4.2.1電動車輛線傳驅動馬達硬體設備介紹.............................84 4.2.2電動車輛線傳轉向馬達硬體設備介紹.............................87 4.3 驅動馬達控制程式...89 4.4 轉向馬達控制程式...91 4.5 臨實驗平台驗證...95
第五章 結論與建議...112 5.1 結論...112 5.2 建議事項與未來研究項目...113
参考文献..116
REFERENCES
[48] 劉奕誠,「車輛線傳電控轉向系統模擬測試之研究」 大葉大學車輛工程研究所碩士論文, 2009。
[49] 紀彥琦,「線傳智慧型車輛驅動與操控動態模擬及控制之研究」 大葉大學車輛工程研究所碩士論文, 2010。
[50] 黃治瑋,「應用於模組化輕型電動車之神經網路控制六相永磁馬達驅動系統」 國立中央大學電機工程學系碩士論文, 2010。