Study of performance optimization for band-pass shielding enclosures and their internal antennas for

Abstract

In this thesis, the performance optimization of a band-pass shielding enclosure (BPSE) combined with its internal antenna is investigated in detail. As this investigation shown, the performance optimization highly depends on the internal antenna, as well as the adjacent periodic elements and the sideboards of the BPSE. For this optimization, an internal high-permittivity dielectric-resonator antenna is newly suggested. This is not only for the more compact antenna size, but also for the minimum distance allowed between the antenna and the metallic sideboards of the BPSE. In addition, an appropriate zone for locating the antenna is suggested in terms of the relative position between the antenna and its adjacent BPSE elements. According to these suggestions, the antenna is therefore capable of being located in BPSE's corner deeply, which position is usually required in practice.

Keywords: Shielding, frequency-selective surface, wireless communication

Table of Contents

1. Introduction
2. Frequency-selective surface and WLAN overview
3. Application of frequency-selective surface and internal antenna
4. Optimization of internal antennas and band-pass shielding enclosures
5. Conclusion

References

Figures

Venue Page Signature Page Chinese Abstract English Abstract Dedication Table of Contents Chapter 1 Introduction 1.1 Introduction 1.2 Research Motivation and Objectives 1.3 Literature Review 1.4 Paper Structure Chapter 2 Frequency-selective surface and WLAN overview

Chapter 3 Application of frequency-selective surface and internal antenna

Chapter 4 Optimization of internal antennas and band-pass shielding enclosures

Chapter 5 Conclusion

References

Figures
時 \(Y_1 = 0 \) \(Y_3 = 0 \) 圖4.3.2內部天線在中心頻率為 \(2.45 \) GHz時的電場圖

內部天線置於帶通屏蔽體角落的反射損耗，此時 \(X_1 = 0 \) \(X_2 = 0 \) \(Y_1 = 0 \) \(Y_3 = 0 \) 圖4.3.3

内部天線置於帶通屏蔽體角落且中心頻率為 \(2.45 \) GHz的場型圖，此時 \(X_1 = 0 \) \(X_2 = 0 \) \(Y_1 = 0 \) \(Y_3 = 0 \): \(Z-X \) 平面

内部天線置於帶通屏蔽體角落且中心頻率為 \(2.45 \) GHz的場型圖，此時 \(X_1 = 0 \) \(X_2 = 0 \) \(Y_1 = 0 \) \(Y_3 = 0 \): \(Z-Y \) 平面

內部天線的實作圖 圖4.3.6

圖4.3.7為帶通屏蔽體的實作圖

REFERENCES

[28] Ansoft HFSS Website.

[33] 袁帝文. 高頻通訊電路設計. 高立圖書有限公司. 民國93年版.