在低分壓下評估活性碳及其改質劑對二氧化碳吸附效能

曾仕傑、余世宗

摘 要
本研究是以活性碳為二氧化碳吸附劑，在低分壓下評估其吸附效能，並利用氫氧化鈉溶液含浸方法，增加活性碳吸附二氧化碳能力，探討溫度、水份對二氧化碳之吸附之影響。為模擬室內環境，吸附試驗之起始二氧化碳濃度範圍約介於3000~5000 ppm，溫度設定在20、25、30、35、40℃。在吸附二氧化碳實驗中，發現反應槽相對溼度高低，會影響吸附劑吸附二氧化碳吸附量，並呈現相互競爭的現象。由平衡吸附模式結果可以得知活性碳與含浸氫氧化鈉之活性碳吸附效果，其中活性碳平均吸附量293.04 mg/g，含浸0.05N(NaOH)平均吸附量490.07 mg/g，而含浸0.1N(NaOH)平均吸附量在750.55 mg/g，吸附效果最好的是含浸1N(NaOH)平均吸附量2011.24 mg/g。由平衡吸附模式結果可知活性碳與含浸氫氧化鈉活性碳吸附二氧化碳實驗結果，計算後發現以一階、二階動力模式比較適合說明吸附過程中二氧化碳濃度動態變化，而二階動力模式有較良好的線性關係；若比較一階動力模式理論值(qm)與實驗值(qe)之差距，此差距明顯大於二階動力模式實驗值(qe)與理論值(qm)之差距，由此可得知未含浸活性碳與含浸(NaOH)活性碳吸附行為較符合二階動力模式。在內部擴散模式中，k值會隨著含浸氫氧化鈉濃度增加而增加，其實際的數據與內部擴散模式圖形趨勢相符。另外內部擴散模式與二階動力模式之差距，也間接說明二氧化碳吸附平衡實驗中，在吸附劑的表面有孔內擴散行為發生。

關鍵詞：二氧化碳吸附、動力模式、吸附劑

目錄

目錄 封面內頁 簽名頁 中文摘要... iii 英文摘要... v 謁謝... vii 目錄... viii 圖目錄... xi 表目錄... xiv 第一章 緒論 1.1 研究動機... 1 1.2 研究內容... 2 第二章 文獻回顧 2.1 室內品質概述... 3 2.2 室內空氣品質之重要性... 4 2.3 室內空氣污染物... 5 2.4 室內空氣品質評估... 6 2.5 二氧化碳來源影響與特性... 8 2.6 二氧化碳處理方法... 10 2.6.1 捕捉型式.. 10 2.6.2 二氧化碳生物固定方法... 13 2.7 吸附理論... 14 2.7.1 吸附過程.. 14 2.7.2 吸附種類.. 15 2.7.3 吸附型態.. 17 2.8 吸附動力學... 18 2.8.1 Pseudo-first-order.. 18 2.8.2 Pseudo-second-order... 19 2.8.3 Intraparticle diffusion model.. 20 2.9 吸附性碳材改質及多孔隙文獻彙整... 20 第三章 研究方法與步驟 3.1 研究方法... 23 3.2 實驗材料... 25 3.3 實驗設備... 25 3.4 實驗設備校正與方法... 27 3.4.1 潤濕偵測計校正.. 27 3.4.2 二氧化碳偵測計校正... 28 3.4.3 傅立葉轉換紅外線光譜儀... 29 3.5 二氧化碳起始濃度控制... 30 3.6 吸附劑預前處理及添加... 30 3.7 吸附劑吸附二氧化碳平衡吸附量計算... 31 3.8 吸附劑吸附水份吸附量計算... 31 3.9 氫氧化鈉(NaOH)改質活性碳方法... 32 第四章 結果與討論 4.1 活性碳含浸前後之特性分析... 33 4.1.1 傅立葉轉換紅外線光譜儀... 33 4.2 活性碳吸附量與溼度關係... 36 4.3 活性碳改質前後吸附平衡實驗... 37 4.4 動力吸附模式之分析.. 48 4.4.1 Pseudo-first-order kinetic model.. 48 4.4.2 Pseudo-second-order kinetic model... 53 4.4.3 Intraparticle diffusion model... 59 4.5 結論與建議... 60
參考文獻

參考文獻

中文文獻
1. 江欣宸, 台湾旅館客房室内空気品質之评估 研究生, 台北護理學院旅遊健康學系研究所論文, 2004。
2. 吳碧蓮, 奈米碳管吸附二氧化碳之研究, 中興大學環境工程學系碩士論文, 2006。
3. 鄭裕閔, 鹼性物質負載於活性碳吸附二氧化硫之研究, 國立中山大學環境科學研究所論文, 2008。
4. 林春如, 微波因子對含銅污泥穩定處理之研究, 國立雲林科技大學環境工程與安全衛生工程系碩士論文, 2006。
5. 林貫文, 廣域性吸附之處理技術研究, 國立成功大學環境工程學系博士論文, 2006。
6. 林春如, 微波因子對含銅污泥穩定處理之研究, 國立雲林科技大學環境工程與安全衛生工程系碩士論文, 2006。
7. 柯柏輝, 导电高分子與多層奈米碳管複合材料之研究, 國立中央大學材料科學研究所博士論文, 2006。
8. 魏向辰, 导电高分子與多層奈米碳管複合材料之研究, 國立中央大學材料科學研究所博士論文, 2006。
9. 羅仁昱, 微波因子對奈米碳管改質之影響及其吸附之應用, 國立雲林科技大學環境工程學系博士論文, 2006。

英文文獻