Chapter VI.

5.1 Bonnet Reinforcement Structure Design

5.2 Design of Bonnet Thicknesses

5.2.1 Design of Optimal Function

5.2.2 Design of Constraints

5.3 Results and Discussions

5.3.1 Design of Optimal Function

5.3.2 Design of Constraints

5.3.3 Results and Discussions

Chapter V.

PEDESTRIAN FRIENDLY BONNET STRUCTURE

4.1 Assessing of the Pedestrian Friendliness of Original Bonnet

4.2 The Effect of Bonnet Thickness on HIC value and Deflection

4.3 Optimizing Bonnet Thickness with Respect to Pedestrian Head Safety

4.3.1 Design of Optimal Function

4.3.2 Design of Constraints

4.3.3 Results and Discussions

Chapter IV.

OPTIMAL DESIGN OF BONNET THICKNESSES

4.1 Calculating the HIC value

4.2 Processing of Output Data

4.3 Dynamics Analysis of Impact Process between Headform and Bonnet

Chapter III.

ANALYSIS OF PEDESTRIAN FRIENDLY BONNET DESIGN

3.1 Finite Element Model of Headform Impactors

3.2 Simulation of Headform Impactor to Bonnet Top Tests

3.3 Simulation of Pedestrian Headform Impactors

3.4 Processing of Output Data

3.5 Results and Discussions

3.5.1 Effect of Normal and Tangential Accelerations on the HIC value

3.5.2 Analysis of Normal Acceleration Variation

3.5.3 Analysis of Curvature of Head Center Motion Variation

Chapter II.

HEADFORM TO BONNET STRUCTURE DESIGN FOR PEDESTRIAN PROTECTION

2.1 Introduction of Pedestrian Headform Impactor to Bonnet Top Tests

2.2 Simulation of Pedestrian Headform Impactors

2.3 Certification Tests of Headform Tests

2.4 Head Injury Criterion

2.5 Testing Procedure

Chapter I.

INTRODUCTION

1.1 Motivation

1.2 Survey

1.3 Literature Survey

1.3.1 Solutions for Pedestrian Protection

1.3.2 Bonnet Analyzing Method of Pedestrian Head to Bonnet Top Tests

1.4 Research Objectives and Scope

1.5 Research Method

ACKNOWLEDGEMENTS

I would like to express my acknowledgement to all people who helped me to finish my research works. I want to thank Da-Yeh University, Mechanical and Automation Engineering Department for giving me a chance to come to Taiwan to study and do my dissertation. I would like to gratefully acknowledge to Professor Cho-Chung Liang, my advisor's friend who gave me advices and support, interest and valuable hints. I want to thank them for all their help, graduate students, classmates, and latter graduate students from the Impact Dynamics Laboratory who supported me in my research from home. I also want to say thanks to my father and mother-in-law for their taking care of my wife and my daughter. My former Encouragement in doing research. I want to say thanks to my lovely wife who was parenting alone so I can perform my dream far dissertation. I would like to gratefully acknowledge to Professor Tso-Liang Teng who is my advisor for helping me very much when I applied scholarship as well as in Education for giving me permission to attend the PhD program in Da-Yeh University, Taiwan. Specially, I would like to express my deep appreciation to Professor Tran Trung who is the rector of Hung-Yen University of Technology and University, Mechanical and Automation Engineering Department for giving me a chance to come to Taiwan to study and do my dissertation. I want to express my acknowledgement to all people who helped me to finish my research works. I want to thank Da-Yeh University, Mechanical and Automation Engineering Department for giving me a chance to come to Taiwan to study and do my dissertation. I would like to gratefully acknowledge to Professor Cho-Chung Liang, my advisor's friend who gave me advices and support, interest and valuable hints. I want to thank them for all their help, graduate students, classmates, and latter graduate students from the Impact Dynamics Laboratory who supported me in my research from home. I also want to say thanks to my father and mother-in-law for their taking care of my wife and my daughter. My former Encouragement in doing research. I want to say thanks to my lovely wife who was parenting alone so I can perform my dream far dissertation. I would like to gratefully acknowledge to Professor Tso-Liang Teng who is my advisor for helping me very much when I applied scholarship as well as in Education for giving me permission to attend the PhD program in Da-Yeh University, Taiwan. Specially, I would like to express my deep appreciation to Professor Tran Trung who is the rector of Hung-Yen University of Technology and University, Mechanical and Automation Engineering Department for giving me a chance to come to Taiwan to study and do my dissertation. I want to express my acknowledgement to all people who helped me to finish my research works. I want to thank Da-Yeh University, Mechanical and Automation Engineering Department for giving me a chance to come to Taiwan to study and do my dissertation. I would like to grateful...
CONCLUSION

The conclusions discuss the findings and implications of the research conducted on pedestrian and cyclist impact. The recommendations for future research works are also presented.

REFERENCES

18. Ingenieria Y A Sistemas S.A: www.arise-ingenieria.com
26. Aessandro Zanella, Francesco Butera, Enrico Gobetto, Centro Ricerche - Smart Bumper for Pedestrian Protection - FIAT, Italy.
Trinity Centre for Bioengineering.

Yong Ha Han and Young Woo Lee. (2003). Development of a Vehicle Structure with Enhanced Pedestrian Safety. SAE World Congress, Detroit, Michigan, USA.


Col, D., Furini, F., Mueller, O., Trivero, R. Static-Vibrational Design of a Bonnet with Frame Topological Optimization. MSC User-Conference; 1998; Turin, Italy.