Fabrication of inverted GaAs solar cells on silicon substrates

陳勵瑋、蕭宏彬

E-mail: 322112@mail.dyu.edu.tw

ABSTRACT

This study is to investigate the fabrication of inverted GaAs solar cells on silicon substrates by wafer bonding and epitaxial lift-off technique. Conventional InGaP/GaAs/Ge-based triple junction solar cells with high conversion efficiency have been demonstrated. However, Ge junction contributes only 270 mV to open circuit voltage due to 0.66 eV of bandgap energy for Ge. By switching to InGaAs, the bandgap energy of this junction increases to 1.03 eV. Typical voltages of 550~650 mV can be generated, which enables it to be joined to InGaP/GaAs junctions without limiting the cell's current. This approach involves growing InGaP and GaAs junctions that are lattice matched to a Ge or GaAs substrate in an inverted manner. Any dislocations are then confined to the InGaAs junction, which is deposited on top of the InGaP/GaAs dual junctions. Moreover, GaAs substrates removed by epitaxial lift-off technique are recyclable to save resource and prevent form waste. In this study, wafer bonding technique was applied to connect inverted GaAs solar cells and Si substrates by Au/Ag/Au and Au/Sn/Au. Then GaAs substrates were separated from inverted GaAs solar cells by epitaxial lift-off technique. Finally, the fabrication of inverted GaAs solar cells without any antireflection coating (ARC) was finished by photolithography. The measured open circuit voltage (Voc), short circuit current density (Jsc), fill factor (F.F.) and conversion efficiency (η) of the thin film GaAs solar cells on silicon substrates were 0.85V, 20.58mA/cm², 0.74 and 12.8% respectively.

Keywords : GaAs solar cells、Inverted metamorphic structure、Wafer bonding、Epitaxial lift-off

目錄

第一章 序論 1.1 前言.................... 1 1.2 研究背景與動機........... 2

第二章 理論介紹 2.1 太陽光光譜................. 6 2.2 太陽能電池原理....... 9 2.2.1 太陽能電池參數介紹..........11 2.2.2 太陽能電池等效電路..........13

2.3 反向結構砷化鎵太陽電池............ 15 2.4 晶圓接合................... 19 2.4.1 晶圓接合的種類............19 2.4.2 晶圓接合的品質............21 2.4.3 晶圓接合的夾具設計..........23

2.5 磊晶層剝離技術...............25

第三章 傳統與反向結構太陽能電池製程 3.1 元件結構介紹................27 3.1.1 傳統結構砷化鎵太陽電池........27 3.1.2 反向結構砷化鎵太陽電池........28 3.2 傳統結構薄膜砷化鎵太陽電池製作流程..... 29 3.3 反向結構薄膜砷化鎵太陽電池製作流程.....32

第四章 實驗結果與討論 4.1 簡介....................37 4.2 晶圓接合分析................37 4.2.1 傳統結構薄膜太陽電池晶圓接合分析...37 4.2.2 反向結構薄膜太陽電池晶圓接合分析...38 4.3 薄膜太陽能電池電壓電流量測.........43 4.3.1 傳統結構太陽電池電壓電流特性.....43 4.3.2 反向結構太陽電池電壓電流特性.....45 4.3.3 傳統結構與反向結構太陽電池對照..46

第五章 結論......................48
REFERENCES