Study on isolation of cellulose-degrading strain and bioethanol production strain

謝明綸、吳建一
E-mail: 322076@mail.dyu.edu.tw

ABSTRACT
In recent years, with world reserves of petroleum fast depleting, ethanol has emerged as most important alternative resource for biofuel and has generated a great deal of research interest in ethanol fermentation. Production of ethanol from renewable cellulosic resources may improve energy availability, decrease atmospheric CO2 accumulation and air pollution. Therefore, this study is to use microbial conversion of cellulosic waste into ethanol, the result is divided into two parts: The first: In order to produce CMCase that can be transformed to reducing sugar, more than 3 bacteria isolates were screened from food factory, paper sludge, insect intestinal bacteria and then identified according to their 16S rDNA gene sequences. The three strain with high cellulose degrading capability were identified as Bacillus subtilis CELL, Bacillus sp. and Arthrobacter woluwensis Wu1, respectively. Additionally, the effects of the fermentation parameters such as initial pH, temperature, and nitrogen source on the CMCase production were studied using carboxymethyl cellulose (CMC) as the carbon source. CMCase from Arthrobacter woluwensis Wu1, Bacillus subtilis CELL and Bacillus sp. was maximally secreted at 37°C, initial pH 5.0, 6.0, 7.0 with are all 15 g/L of CMC as carbon source, and 1, 5, 5 g/L of yeast extract as organic nitrogen source, respectively. The second: The fermentative ability of Candida tropicalis Wu1 yeast to produce ethanol was examined. The effects of the fermentation parameters such as initial stirred speed, and nitrogen source on the ethanol production were studied using glucose as the carbon source in batch cultures. Ethanol from Candida tropicalis Wu1 was maximally yield at 30°C, static cultures with 20 g/L of glucose as carbon source, and 2.5 g/L of (NH4)2SO4 as nitrogen source, respectively. Additionally, conversion of glucose to ethanol by immobilized C. tropicalis Wu1 beads were examined. The results showed that the maximum ethanol productivity of immobilized C. tropicalis Wu1 was 0.33 g/L/h with 50 g/L glucose at 30℃ and 50 rpm.
Figure 4-45 Effects of added reducing sugar by Bacillus sp. at 37℃.

Figure 4-44 Effect of carbon sources on cellulose degradation activities by isolated Bacillus sp. at different stirred speed in batch cultures at 37℃.

Figure 4-43 Effect of stirred speed on specific growth rate and yield of reducing sugar by Bacillus subtilis CELL at 37℃.

Figure 4-42 The time course of reducing sugar and biomass by isolated Bacillus CELL at different stirred speed in batch cultures at 37℃.

Figure 4-41 Effect of stirred speed on specific growth rate and yield of Arthrobacter woluwensis WU1 at 37℃.

Figure 4-40 The time course of reducing sugar and biomass by isolated Bacillus subtilis CELL at different stirred speed in batch cultures at 37℃.

Figure 4-39 Effect of stirred speed on specific growth rate and yield of reducing sugar by Arthrobacter woluwensis WU1 at 37℃.

Figure 4-38 The time course of reducing sugar and biomass by isolated Bacillus subtilis CELL at varying temperature in batch culture at 150 rpm.

Figure 4-37 Effect of initial temperature on specific growth rate and yield of reducing sugar by Bacillus subtilis CELL.

Figure 4-36 Effect of initial yeast extract concentration on specific growth rate and yield of reducing sugar by Bacillus subtilis CELL at 37℃.

Figure 4-35 The time course of reducing sugar and biomass by isolated Bacillus sp. at varying temperature in batch cultures at 37℃.

Figure 4-34 Arrhenius plots for specific growth rate and yield of reducing sugar by Bacillus subtilis CELL at 150 rpm.

Figure 4-33 The time course of reducing sugar and biomass by isolated Bacillus subtilis CELL at different pH in batch cultures at 37℃.

Figure 4-32 The time course of reducing sugar and biomass by isolated Arthrobacter woluwensis WU1 at varying temperature in batch culture at 150 rpm.

Figure 4-31 Arrhenius plots for specific growth rate and yield of reducing sugar by Arthrobacter woluwensis WU1 at 150 rpm.

Figure 4-30 The time course of reducing sugar and biomass by isolated Arthrobacter woluwensis WU1 at different concentration of yeast extract in batch culture at 150 rpm and 37℃.

Figure 4-29 The time course of reducing sugar and biomass by isolated Bacillus subtilis CELL at different concentration of yeast extract in batch culture at 150 rpm and 37℃.

Figure 4-28 Effect of initial pH on specific growth rate and yield of reducing sugar by Bacillus sp. at 37℃.

Figure 4-27 The time course of reducing sugar and biomass by isolated Bacillus sp. at different stirrer speed in batch cultures at 37℃ and 150 rpm.

Figure 4-26 Effect of initial pH on specific growth rate and yield of reducing sugar by Bacillus subtilis CELL at 37℃.

Figure 4-25 The time course of reducing sugar and biomass by isolated Arthrobacter woluwensis WU1 at different concentration of yeast extract in batch culture at 150 rpm and 37℃.

Figure 4-24 Effect of initial pH on specific growth rate and yield of reducing sugar by Bacillus sp. at 37℃.

Figure 4-23 The time course of reducing sugar and biomass by isolated Arthrobacter woluwensis WU1, after incubation at 37℃, for 24 h.

Figure 4-22 Effect of initial yeast extract concentration on specific growth rate and yield of reducing sugar by Bacillus subtilis CELL at 37℃.

Figure 4-21 The time course of reducing sugar and biomass by isolated Bacillus sp. at different pH in batch cultures at 37℃ and 150 rpm.

Figure 4-20 Effect of initial yeast extract concentration on specific growth rate and yield of reducing sugar by Arthrobacter woluwensis WU1 at 37℃.

Figure 4-19 The time course of reducing sugar and biomass by isolated Arthrobacter woluwensis WU1 at different concentration CMC in batch cultures at 150 rpm and 37℃.

Figure 4-18 Effect of initial yeast extract concentration on specific growth rate and yield of reducing sugar by Bacillus sp. at 37℃.

Figure 4-17 The time course of reducing sugar and biomass by isolated Arthrobacter woluwensis WU1 at different concentration of yeast extract in batch culture at 150 rpm and 37℃.

Figure 4-16 Effect of initial CMC concentration on specific growth rate and yield of reducing sugar by Bacillus subtilis CELL at 37℃.

Figure 4-15 The time course of reducing sugar and biomass by isolated Arthrobacter woluwensis WU1 at different concentration CMC in batch cultures at 150 rpm and 37℃.

Figure 4-14 Effect of initial CMC concentration on specific growth rate and yield of reducing sugar by Bacillus subtilis CELL.

Figure 4-13 The time course of reducing sugar and biomass by isolated Arthrobacter woluwensis WU1 at different concentration CMC in batch cultures at 150 rpm and 37℃.

Figure 4-12 Effect of initial CMC concentration on reducing sugar by Bacillus sp. at 37℃.

Figure 4-11 The time course of reducing sugar and biomass by isolated Arthrobacter woluwensis WU1 at different concentration CMC in batch cultures at 150 rpm.

Figure 4-10 Effect of nitrogen source on cellulose degradation activities from CMC (10g/L)-agar plate by isolated Bacillus sp., after incubation at 37℃, for 24 h.

Figure 4-9 Effect of nitrogen source on cellulose degradation activities from CMC (10g/L)-agar plate by isolated Arthrobacter woluwensis WU1.

Figure 4-8 Effect of nitrogen source on cellulose degradation activities from CMC (10g/L)-agar plate by isolated Bacillus sp.

Figure 4-7 Phylogenetic dendrogram showing a comparison of the aligned 16S rDNA sequences of known Bacillus species with that of strain Bacillus subtilis CELL.

Figure 4-6 Phylogenetic dendrogram showing a comparison of the aligned 16S rDNA sequences of known Arthrobacter species with that of strain Arthrobacter woluwensis WU1.

Figure 4-5 Congo red test (F)-(H): cellulose degradation activities of experimental cellulolytic microbes isolates on CMC agar plate.

Figure 4-4 Congo red test (C)-(E): cellulose degradation activities of experimental cellulolytic microbes isolates on CMC agar plate.

Figure 4-3 Congo red test (A)-(B): cellulose degradation activities of experimental cellulolytic microbes isolates on CMC agar plate.

Figure 4-2 Congo red test: cellulose degradation activities of experimental cellulolytic microbes isolates on CMC agar plate.

Figure 4-1 Standard calibration curve of glucose.
Figure 4-46 Effects of added different substrates on cellubiose degradation by Bacillus subtilis CELL at 37℃ for 6 day
Figure 4-47 The time course of ethanol product by suspended yeast at batch and static cultures using glucose as carbon source
Figure 4-48 Phylogenetic dendrogram showing a comparison of the aligned 16S rDNA sequences of known Candida species with that of strain Candida tropicalis Wu
Figure 4-49 The time course of biomass and ethanol product by suspended and immobilized Candida tropicalis Wu cell beads (25 g-bead/250 ml) at different stirred speed in batch cultures
Figure 4-50 The results of average specific growth rate, cell mass yield, ethanol yield on glucose, and ethanol yield on cell mass at different stirred speed in suspended cell system
Figure 4-51 The results of ethanol yield on glucose, and ethanol yield on immobilized-cell beads at different stirred speed in immobilized-cell beads system
Figure 4-52 The time course of biomass and ethanol product by suspended and immobilized Candida tropicalis Wu cell beads (25 g-bead/250 ml) at different nitrogen source in batch cultures
Figure 4-53 The results of average specific growth rate, cell mass yield, ethanol yield on glucose, and ethanol yield on cell mass at different nitrogen source in suspended cell system
Figure 4-54 The results of ethanol yield on glucose, and ethanol yield on immobilized-cell beads at different nitrogen source in immobilized-cell beads system
Figure 4-55 The time course of biomass and ethanol product by suspended and immobilized Candida tropicalis Wu cell beads (25 g-bead/250 ml) at different concentration of (NH4)2SO4 in batch cultures
Figure 4-56 The results of average specific growth rate, cell mass yield, ethanol yield on glucose, and ethanol yield on cell mass at different (NH4)2SO4 concentration in suspended cell system
Figure 4-57 The results of ethanol yield on glucose, and ethanol yield on immobilized-cell beads at different (NH4)2SO4 concentration in immobilized-cell beads system
Figure 4-58 The time course of biomass and ethanol product by immobilized Candida tropicalis Wu cell beads (25 g-bead/250 ml) at different beads size in batch cultures
Figure 4-59 The results of ethanol yield on glucose, and ethanol yield on immobilized-cell beads at different beads size in immobilized-cell beads system
Figure 4-60 The results of the production of ethanol by immobilized Candida tropicalis Wu cell beads during repeat-batch fermentation
Figure 4-61 Microbial population development and distribution of PVA gel beads during continuous operation. (A) beads prior to start-up; (B) beads after 5 times of incubation. Dash 1 and 2 respectively indicate the whole beads and surface area
Figure 4-62 Microbial population development and distribution of PVA gel beads during continuous operation. (A) beads prior to start-up; (B) beads after 5 times of incubation. Dash 1 and 2 interior of beads
Figure 4-63 The time course of biomass and ethanol product by suspended and immobilized Candida tropicalis Wu cell beads (25 g-bead/250 ml) at different concentration of glucose in batch cultures
Figure 4-64 (a) Effect of the ethanol product of different glucose concentration in suspended cell system (b) Lineweaver-Burk plot of the different concentration of glucose
Figure 4-65 (a) Effect of the ethanol product of different glucose concentration in immobilized-cell beads system.(b) Substrate inhibition of the different concentration of glucose

Table 2-1 The contents of cellulose, hemicellulose, and lignin in common agricultural residues and wastes
Table 2-2 Fibre-decomposing bacteria species
Table 2-3 Domestic fibre-decomposing and fibre-decomposing bacteria relevant studies
Table 2-4 Domestic bioethanol promotion policies
Table 2-5 International bioethanol promotion preliminary examination
Table 2-6 Yeast species which produce ethanol as the main fermentation product
Table 3-1 Modified Mandels-Reese medium
Table 3-2 Yeast Extract Peptone Dextrose (YPD) medium
Table 3-3 PCR program
Table 3-4 PCR primers used in this study
Table 3-5 The composition of DNS reagent
Table 4-1 Comparison with cellulose degrading ability of different cellulose degrading bacteria
Table 4-2 Comparison with cellulose degrading ability of different cellulose degrading bacteria under various nitrogen source

REFERENCES

王三郎。1991。生活工學入門。第57-72頁。藝軒圖書出版社。台北市。
王俊豪。2005。德國再生能源與生物能源之發展。農政與農情。
王鳳英。1991。利用固態發酵以玉米穗軸生產纖維素分解酵素。國立台灣大學農業化學研究所博士論文。台北。
台灣區造紙工業同業公會。石油策略油研究中心。
左峻德。1997。纖維素?造紙工業。第12-15頁。廣西:廣西輕工業出版社。
陳威廷。2004。纖維素水解菌之培養策略與纖維素水解酵素之鑑定。國立成功大學化學工程學系碩士論文。台南。
氣候變化綱要公約資訊網。2006。溫室效應與氣候變化。
偕慶璋,劉嘉哲和顏政瑋。2006。巴西、美國生質能源(biomass, bioenergy)與汽車酒精產業之發展考察報告。OPEN 政府出版資料回應網。

Letters. 4: 39-44.

Hossack, J. A. and Rose, A. H. 1976. Fragility of plasma membranes in Saccharomyces cerevisiae enriched with different

Biochemistry. 70: 2762-5.

Saccharomyces cerevisiae by overexpression of ubiquitin ligase Rsp5 and ubiquitin-conjugating enzymes. Bioscience Biotechnology and

Applied Microbiology and Biotechnology. 34: 502-508.

Rehm, H. J. 1990. Relationship between fermentation capability and fatty acid composition of free and immobilized Saccharomyces cerevisiae.

Hilge-Rotmann, B. and

Technology. 8: 309-314.

Microbiology Technology. 37: 11-22.

Gong, C. S., McCracken, L. D. and Tsao, G. T. 1981. Direct fermentation of D-xylose to ethanol by a

highly thermostable xylanase by a wild strain of thermophilic fungus Thermoascus aurantiacus and partial characterization of the enzyme. Journal

Gomes, D. J., Gomes, J. and Steiner, W. 1994. Production of

Goldstein, I.

microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiological Reviews. 55: 303-315.

Goldemberg, J.,

accelerate glucose conversion to ethanol. Biotechnology and Bioengineering. 36: 417-426.

Galazzo, J. and Bailey, J. 1990. Growing Saccharomyces cerevisiae in calciumalginate beads induces cell alterations which

of lignocellulose. Enzyme and Microbiology Technology. 31: 353-364.

Esteban, R., Willanueva, J. R. and Villa, T. G. 1982. β-D-Xylanases of

Bioresource Technology. 73: 251-255

Eriksson, T., Borjesson, J. and Tjerneld, F. 2002. Mechanism of surfactant effect in enzymatic hydrolysis

Enzyme and Microbiology Technology. 109: 349-355

Dawes, I. W. and Sutherland, I. W. 1992. Microbial Physiology, Blackwell Scientific

das, P. and Livingston, A. G. 1997. Specific ATP and specific

Galazzo, J. and Bailey, J. 1990. Growing Saccharomyces cerevisiae in calciumalginate beads induces cell alterations which

of lignocellulose. Enzyme and Microbiology Technology. 31: 353-364.

Esteban, R., Willanueva, J. R. and Villa, T. G. 1982. β-D-Xylanases of

Bioresource Technology. 73: 251-255

Eriksson, T., Borjesson, J. and Tjerneld, F. 2002. Mechanism of surfactant effect in enzymatic hydrolysis

Enzyme and Microbiology Technology. 109: 349-355