車輛保險桿對行人腿部損傷之影響研究

禹俊英、鄧作樑

E-mail: 322068@mail.dyu.edu.tw

摘要

每年有數以千計的行人在交通事故中傷亡，在這些行人與車輛撞擊事故中，腿部是行人受傷統計中最常發生的身體部位，這些腿部受傷的主因是遭受汽車前保險桿撞擊所造成；因此，探討保險桿對行人損傷之影響在行人安全研究中有著重要意義。本研究首先探討保險桿形狀對行人腿部損傷之影響，使用行人腿部衝擊器模型針對不同形狀保險桿的車輛模型進行衝擊測試模擬；透過腿部衝擊器與車輛保險桿衝擊模擬探討在保險桿不同位置對行人腿部碰撞損傷之影響；然後依據可降低行人腿部損傷的保險桿形狀特性建立保險桿設計準則。由於保險桿材料對結構硬度有著很大的影響，故保險桿材料的選擇對降低行人腿部損傷有著重要的作用。因此，本研究的第二個目的在探討保險桿材料對行人損傷之影響；以上述保險桿結構在改變不同的材料下進行對行人腿部損傷分析，透過腿部衝擊器與車輛保險桿衝擊模擬選擇合適的保險桿材料。最後本研究依據保險桿形狀與材料對行人腿部損傷影響的分析結果來設計一款對行人腿部安全之保險桿；且此新型保險桿可滿足EEVC/WG17對行人腿部損傷的要求標準。

關鍵詞：行人，腿部損傷，保險桿，腿部衝擊器

目錄

AUTHORIZATION LETTER..iii
ABSTRACT..iv
CHINESE ABSTRACT..v
ACKNOWLEDGEMENTS..vi
TABLE OF CONTENTS.. vii
TABLE OF FIGURES... ix
LIST OF TABLES... xii
Chapter I: INTRODUCTION ... 1
1.1 Motivation... 1
1.2 Literature Survey.. 5
1.3 The Purpose of this Study................................... 11
1.4 Structure of this Thesis.................................... 11
Chapter II: INTRODUCTION OF EECV LEGFORM TO BUMPER TEST.......... 23
2.1 Legform Impactor to Bumper Test............................. 23
2.1.1 Purpose of the Test.. 23
2.1.2 Testing Procedure... 24
2.1.3 Legform impactor description............................... 25
2.2 Simulation of legform to bumper test.......................... 27
2.2.1 Finite element of legform impactor........................ 27
2.2.2 Finite element passenger car............................... 28
2.2.3 Simulation of legform to bumper test 29
Chapter III: ANALYSING FOR DESIGN PEDESTRIAN FRIENDLY BUMPER 42
3.1 Introduction of experiment tests............................ 42
3.2 Simulation of legform to bumper test........................ 43
3.3 Verification of simulation results........................... 44
3.4 Analyzing for design pedestrian friendly bumper.............. 45
3.4.1 The effect of bumper geometry on the pedestrian leg injury. 45
3.4.2 The effect of bumper material on the pedestrian leg injury. 47
Chapter IV: DESIGN OF FRIENDLY BUMPER FOR PEDESTRIAN 66
4.1 Design of friendly bumper for pedestrian.................... 66
4.2 The test procedure and requirements........................ 68
4.3 Discussions and conclusions.................................. 68
Chapter V: CONCLUSIONS AND PERSPECTIVES.......................... 75
5.1 Conclusions.. 75
5.2 Further Studies... 76
REFERENCES.. 77
TABLE OF FIGURES
Figure 1-1. The injuries people distribution in traffic crashes...13
Figure 1-2. The killed people distribution in traffic crashes.....13
Figure 1-3. Road fatalities in 2005: Pedestrian fatalities / Road fatalities in total .14
Figure 1-4. Pedestrian fatalities and injuries by type of vehicle 1992-2001 average ...14
Figure 1-5. Impact location on the car...........................15
Figure 1-6. Distribution of body region for fatalities and serious injuries15
Figure 1-7. Distribution of impact parts for head and leg injuries16
Figure 1-8. EEVC/WG17 subsystem test..16
Figure 1-9. Setup of full-scale test conducted at JARI17
Figure 1-10. Design variable of the bumper structure17
Figure 1-11. Bumper system with foam ...18
Figure 1-12. Centerline section of bumper structures....................................18
Figure 1-13. Proof of concept pedestrian airbag system..................................19
Figure 1-14. A single sensor module integrated into bumper..............................19
Figure 1-15. Impactors and vehicle test zones...20
Figure 2-1. Tolerances of angles for the legform impactor at the time of first impact. 30
Figure 2-2. Legform to bumper tests for complete vehicle...............................30
Figure 2-3. Legform impactor with skin and foam covering...............................31
Figure 2-4. Static bending certification test of the legform...........................31
Figure 2-5. Static shearing certification test of legform..............................32
Figure 2-6. Requirements of static certification tests

