Investigation of effectiveness of applying cross-injection film cooling technique to curved surfaces

陳坤佑、吳佩學

E-mail: 322046@mail.dyu.edu.tw

ABSTRACT

In this thesis, liquid crystal thermography with steady-state experimental method is used to investigate the effectiveness of cross-injection film cooling technique as applied to convex surfaces. Based on a comparison with flat plate case, the feasibility of applying this cooling technique to the curved surfaces of gas turbine blades is understood. In order to produce the secondary flow phenomena in the endwall region of a turbine blade, one leg of vortices of a delta wing is used in the experiments to realize the interaction mechanism between the vortex generated by the cross-injection coolant and the secondary vortex of the main flow. In the experiments, the cooling hole diameter, hole-to-hole distances, and an included angle (120 degrees) are fixed. The main flow velocities are 6 m/s, 8 m/s, and 10 m/s, corresponding to the Reynolds numbers of 9.2x10^4, 1.24x10^5, and 1.5x10^5, respectively, for a turbine blade/vane with a chord length of 241 mm. The blowing ratios are 0.5, 1, and 2. The delta-wing vortex generator is used to generate secondary flow with upwash vortex or downwash vortex. Experimental results show that the influence trends of Reynolds number and the blowing ratio on flat plate cases agree with the literature. When the blowing ratio increases from 0.5 to 1, the film cooling effectiveness may increase. However, when the blowing ratio further increases up to 2, flow separation may occur at the coolant hole exit, causing the effectiveness to decrease in that region. This situation is the most remarkable for the concave surface. Because the cross-injection coolant generates a counter-clockwise marching vortex (viewed from upstream toward downstream), the upwash vortex in the main flow helps enhance the cross-injection vortex, hence, increase the effectiveness. On the other hand, the downwash vortex weakens the cross-injection vortex and decreases the effectiveness. Both the convex and concave curvatures hamper the attachment of cross-injection coolant to the surface, resulting in a reduction in film cooling effectiveness. The effect is also the most influential for the concave surface.

Keywords: liquid crystal thermography, cross-injection, film cooling, curved surfaces, upwash vortex, downwash vortex, Reynolds number, blowing ratio, delta-wing vortex

Table of Contents

封面內頁 簽名頁 博碩士論文暨電子檔案上網授權書........iii 中文摘要........................iv ABSTRACT....................................v 謝謝..vii 目錄..viii 圖目錄......................................x 表目錄......................................xviii 符號說明.....................................xix 第一章 總論..................................1 1.1 研究背景..................................1 1.2 研究動機與目的.............................2 第二章 文獻回顧...............................6 2.1 薄膜冷卻相關文獻回顧........................6 2.2 三角翼流場相關文獻回顧......................10 第三章 實驗系統與數據化約......................12 3.1 簡介......................................12 3.2 實驗測試段.................................12 3.3 實驗系統...................................14 3.3.1 溫度量測及熱偶校正.......................14 3.3.2 風洞與主流加熱系統.......................15 3.3.3 影像處理系統及程序.......................16 3.3.4 液晶校正系統與校正曲線....................16 3.3.5 膜冷卻流體供應系統........................18 3.4 數據化約...................................18 3.4.1 基本理論................................18 3.4.2 數據化約程序............................19 3.5 實驗條件與程序.............................19 第四章 結果與討論..............................20 4.1 平板交叉噴流薄膜冷卻........................20 4.1.1 雷諾數之影響............................20 4.1.2 吹氣比之影響............................21 4.1.3 上掃與下掃渦旋之影響.....................21 4.2 凸面交叉噴流薄膜冷卻........................21 4.2.1 雷諾數之影響............................21 4.2.2 吹氣比之影響............................22 4.2.3 上掃與下掃渦旋之影響.....................22 4.3 凹面交叉噴流薄膜冷卻........................22 4.3.1 雷諾數之影響............................22 4.3.2 吹氣比之影響............................23 4.3.3 上掃與下掃渦旋之影響.....................23 4.4 曲率對交叉噴流薄膜冷卻有效性之影響.............23 第五章 結論..................................25 參考文獻......................................27

REFERENCES
