生醫用多孔鈦合金支架之製作與表面改質研究

賴宗瑄、何文福、劉大銘

E-mail: 321894@mail.dyu.edu.tw

摘 要

近幾年來多孔金屬的開發對於金屬植入材而言可謂具有相當性地突破，而本試驗以極具生物活性及低彈性模數的鈦鉬合金系統為出發藍圖並利用成孔劑脫除法製作多孔鈦鉬支架；因為碳酸氫氨(NH₄HCO₃)具有低熔點的特性在脫除上較為簡易，所以選擇它為成孔劑。而實驗初期嘗試以球磨方式使鈦與鉬元素粉末達至均質，球磨至時候由背向式電子顯微觀察發現，粉末呈現一均質型態，故以此組粉末進行多孔鈦鉬支架的製作，但結果顯示其抗壓強度極為脆弱，原因乃在大氣環境下球磨之鈦金屬粉末其氧化程度高達45 wt%，進而導致其燒結性不佳，故後續本試驗將以無球磨之鈦與鉬元素粉末以元素混合方式進行多孔支架的製作。 本試驗以不同的成孔劑添加量製作多孔支架，分別為40、50、60、70及80 vol%，然而隨著孔隙率的增加其抗壓強度也隨之下降，然而成孔劑添加量為60 vol%的多孔鈦鉬支架其抗壓強度與彈性模數為分別為127 MPa及4.21 GPa，綜合以上結果是適合於皮質骨植入材的應用，而此組建亦選為後續表面改質之應用。 為了探討孔洞對磷灰石生成的影響故以無孔鈦鉬為一對照組。在一開始的表面改質鈦及鋅處理後發現試片表面將形成一網狀多孔結構，經高解析X光繞射(high resolution X-ray diffractometer, HR-XRD)分析顯示為Na₂Ti₆O₁₃鈦酸鈉水凝膠層(sodium titanate hydrogel)，後續人工模擬體液(simulated body fluid, SBF)浸泡結果顯示鈦及鋅處理後之多孔鈦鉬於浸SBF浸泡21天後發現孔洞內部已長滿磷灰石，但鈦處理條件下其磷灰石為大顆；直至21天時，孔洞內外皆以佈滿磷灰石，但鈦處理條件下其磷灰石為大顆；直至21天時，孔洞內外皆以佈滿磷灰石，但鈦處理條件下其磷灰石為大顆；直至21天時，孔洞內外皆以佈滿磷灰石，但鈦處理條件下其磷灰石為大顆；直至21天時，孔洞內外皆以佈滿磷灰石，但鈦處理條件下其磷灰石為大顆；直至21天時，孔洞內外皆以佈滿磷灰石，但鈦處理條件下其磷灰石為大顆；直至21天時，孔洞內外皆以佈滿磷灰石，但鈦處理條件下其磷灰石為大顆；直至21天時，孔洞內外皆以佈滿磷灰石，但鈦處理條件下其磷灰石為大顆；直至21天時，孔洞內外皆以佈滿磷灰石，但鈦處理條件下其磷灰石為大顆；直至21天時，孔洞內外皆以佈滿磷灰石，但鈦處理條件下其磷灰石為大顆；直至21天時，孔洞內外皆以佈滿磷灰石，但鈦處理條件下其磷灰石為大顆；直至21天時，孔洞內外皆以佈滿磷灰石，但鈦處理條件下其磷灰石為大顆；直至21天時，孔洞內外皆以佈滿磷灰石，但鈦處理條件下其磷灰石為大顆。關鍵詞：粉末冶金、多孔鈦金屬、機械性質、表面改質、人工模擬體液
第四章 球磨對鈦鉬元素粉末的性質影響

4.1 前言
4.2 材料與實驗方法
4.2.1 實驗流程
4.2.2 機械合金化粉末的製備
4.2.3 粉末表面型態觀察
4.2.4 壓製生胚
4.2.5 生胚燒結
4.2.6 造粒
4.2.7 壓製生胚
4.2.8 生胚燒結
4.2.9 SEM觀察
4.2.10 EDS元素分析
4.3 結果與討論
4.3.1 原始粉末之顯微觀察
4.3.2 球磨粉末電子顯微觀察
4.3.3 球磨粉末的氧與碳含量變化
4.3.4 球磨粉末背向式電子顯微觀察
4.3.5 粉末XRD分析
4.3.6 多孔鈦鉬合金燒結
4.3.7 EDS元素分析
4.3.8 背向式電子顯微觀察
4.3.9 機械性質之測試

第五章 多孔鈦鉬支架之機械性質的提升與表面改質分析
5.1 前言
5.2 材料及實驗方法
5.2.1 實驗流程
5.2.2 微結構分析
5.2.3 機械性質測試
5.2.4 表面改質
5.3 結果與討論
5.3.1 微結構觀察與分析
5.3.2 機械性質分析
5.3.3 前處理
5.3.4 SBF浸泡

第六章 結論

參考文獻


劉文海, "鋁基複合材料於活塞之應用動向", 金屬中心ITIS計畫, 2008。


張尚偉, 以機械合金法合成鐵鈮非晶質合金粉末之研究, 私立逢甲大學材料科學學系, 2000。

蘇英源, "粉末冶金學", 全華科技圖書股份有限公司, 台灣, 2001。


鄭文堡, "金屬粉末射出成型二維毛細吸附脫脂及飽和度之研究", 國立中央大學機械工程研究所, 2002。


金屬工業研究發展中心-www.mirdc.org.tw


Wen C.E., Chen X.B., Li Y.C., Plessis J.D. and Hodgson P.D., "Influence of calcium ion deposition on apatite-inducing ability of porous


