Study of unmanned ground vehicle dynamic route simulation and control

廖建智、張一屏

E-mail: 321500@mail.dyu.edu.tw

ABSTRACT

The purpose of this study is to integrate the dynamic simulation methodologies for Unmanned Ground Vehicles (UGV). The object-orient program was used to establish the UGV tracked vehicle traction and resistance in both drive motion and turning maneuver. According to different input road surface characteristic parameters, the UGV performance can be simulated by the method developed in this study and the effects of control and vehicle design parameters on performance parameters can also be validated and evaluated. The modules developed for tracked UGV including different sub-modules such as acceleration module, grade ability module, and dynamic path routing module which can predict the designed tracked UGV driving and handling performance. Different surface characteristic parameters and vehicle design parameters were compared to find the better tracked UGV performance to satisfy the specifications including the acceleration time, grade-ability and dynamic turning radius. Dynamic path routing modules were tested for different sine steer and double lane change conditions for different vehicle speeds. The results shown very good response characteristic which can reduce the time and expense for tracked UGV development. Range radar for collision avoidance and other sensors including the vehicle speed, GPS vehicle location, 3-axis accelerometers and CCD camera images were sampled for different vehicle driving conditions with data fusion acquisition system. The data collected for different driving acceleration, and deceleration conditions can be used for future UGV and Adaptive Cruise Control (ACC) system validation database. The radar measurement data and the analysis process developed for discriminating preceding vehicles involve many technologies which will be needed for research and development later UGV controller.

Keywords: Tracked UGV Dynamic Drive and Turning Simulation, UGV Acceleration and Grade-ability Analysis, Dynamic Route Planning, UGV Sensor Fusion

Table of Contents

封面內頁 簽名頁 博碩士論文暨電子檔案上網授權書 iii 中文摘要 iv ABSTRACT vi 註謝 viii 目錄 ix 圖目 xii 表目錄 xviii 符號說明 xix 第一章緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 無人車輛障礙防撞與閃躲之文獻 2 1.2.2 無人車輛傳感器數據融合方法之文獻 7 1.2.3 無人車輛路徑控制相關文獻 11 1.3 研究動機 13 1.4 本文架構 14 第二章無人履帶車輛動態性能模擬 16 2.1 履帶型車輛地面牽引力驅動模型建立 16 2.2 履帶型車輛爬坡性能模型建立 21 2.3 履帶型車輛加速性能模型建立 23 2.4 履帶型車輛左右輪速差轉向模型建立 26 2.5 路徑動態規畫模型建立 29 2.6 量測儀器與資料綜整 33 2.6.1 量測儀器 34 2.6.2 資料綜整 38 第三章結果與討論 42 3.1 履帶型車輛地面牽引力驅動模擬 42 3.1.1 坡度變化模擬 42 3.1.2 履帶寬度變化模擬 46 3.1.3 車重變化模擬 49 3.2 履帶型車輛爬坡性能模擬 53 3.2.1 車速變化模擬 53 3.2.2 坡度變化模擬 54 3.3 履帶型車輛加速性能模擬 54 3.4 履帶型車輛左右輪速差轉向模擬 58 3.5 路徑動態規畫模擬 61 3.5.1 連續繞錐測試模擬 62 3.5.2 變換車道操控 (Double Lane Change, DLC) 模擬 77 3.6 量測資料綜整 91 3.6.1 雷達原始訊號 91 3.6.2 GPS 原始訊號 93 3.6.3 訊號處理 94 3.6.3.1 直線測試 94 3.6.3.2 個別加減速測試 96 3.6.3.3 變換車道 (Double Lane Change, DLC) 測試 97 第四章結論與建議 100 4.1 結論 100 4.2 建議事項與未來研究項目 101 參考文獻 103 REFERENCES


