The study of impedance control of cylindrical rod

Chen Cheng-Yi, Luo Zheng-Zhong
E-mail: 321434@mail.dyu.edu.tw

ABSTRACT

Vibration problem for the structure and mechanical equipment has always been there, how to restrain or reduce the vibration, and no reduce structural strength is an important topic. This will wave propagation and impedance mismatch theory control structure of vibration energy wave transfer, for the impedance analysis and control of wave propagation and study the control of longitudinal and flexural vibration of the energy wave transfer. Experiment method is to inserts different stuff through a variety of length and Young's modulus of the inserts, comparing the reduce vibration to the change of the insert length, which contains material Young's modulus and the placement to explore the changing conditions brought about by the reduce vibration effect. The use of finite element analysis, theory and experiment of each other compared. The experiment results showed that longitudinal part of the first mode of energy wave transmission, with inserts stuff Young's modulus, length, location and distribution of placement changes, the restrain vibration effect of both are positive. The flexural part of the third mode, whether the material or length change of in the energy wave reduce showed its effectiveness.

Keywords : Wave propagation、Impedance mismatch、Reduce vibration

Table of Contents

封面內頁 簽名頁 授權書........................iii 中文摘要........................iv 英文摘要........................v 資謝................................vi 目錄............................vii 圖目錄........................ix 表目錄..........................xii 符號說明........................xiii 第一章緒論.......................1 1.1研究之背景及目的..............1 1.2文獻回顧......................5 1.2.1 形狀記憶合金的組構模型.............5 1.2.2 形狀記憶合金的阻尼特性...........5 1.3全文概述....................7 第二章理論分析....................9 2.1懸臂樑結構的縱向自由振動分析......9 2.2懸臂樑結構的橫向自由振動分析......15 2.3結論.........................23 第三章波傳和阻抗匹配理論................24 3.1波傳介紹.....................24 3.2縱向波..........................27 3.3橫向波.........................31 3.4阻抗匹配........................36 第四章樑結構之模型驗證.............39 4.1有限元素分析.....................39 4.2動態特性分析實驗.................42 4.3模態分析結果驗證.................47 4.3.1 懸臂樑縱向振動.....................48 4.3.2 懸臂樑橫向振動.....................51 第五章實驗結果與討論....................57 5.1縱向振動波的能量傳遞控制的實驗結果..58 5.1.1 嵌入材料的影響....................58 5.1.2 嵌入材料長度變化的影響.............60 5.1.3 嵌入材料位置的影響................62 5.2橫向振動波的能量傳遞控制的實驗結果.65 第六章結論與未來工作...................72 6.1 研究結果..........................72 6.2 未來發展..........................73 參考文獻................................74

REFERENCES

