Modeling and path-tracking control for a riderless-bicycle system

陶忠堅、陳志鏗
E-mail: 319741@mail.dyu.edu.tw

ABSTRACT
In this dissertation, the equations of motion with nine generalized coordinates of a bicycle are developed. For constraints, rolling-without-slipping contact condition between wheels and ground is considered. For each wheel, two holonomic and two non-holonomic constraints are introduced in a set of differential-algebraic equations (DAEs). The dynamics model is validated by verifying the constraints, by comparison with a benchmark model, as well as with experiment results. The mathematic equations are then used to implement a simulation routine. To solve the DAEs of motion and ensure numerical accuracy in simulation of the bicycle system, computational methods for constraint handling are discussed and compared, including two methods to establish the underlying ODEs from the DAEs (coordinate reduction and embedding methods), and three numerical stabilization methods (Baumgarte, post-stabilization and sliding-mode-control post-stabilization). The path-following control is decoupled in two steps. First, the roll-angle tracking controller is studied to control the bicycle following a reference command by applying steering torque while ensuring the roll stability with consideration of several approaches, including PID, fuzzy logic, pole placement and sliding mode. In the second step, the path-tracking controller is developed to generate appropriate roll-angle reference for the roll-angle-tracking controller in order to control the bicycle following a pre-defined path, by using fuzzy logic controllers. The effectiveness of the control schemes is proven by simulations with the developed mathematic model. Performance of the control schemes are evaluated in different conditions, including error information, path preview, constant speed, varying speed, and external disturbance.

Keywords : Bicycle Dynamics, Multibody System, Bicycle Control, Numerical Stability, Roll-Angle Tracking, Path Tracking

Table of Contents

Chapter I: INTRODUCTION
1.1 Motivation
1.2 Literature Review
1.2.1 Bicycle Dynamics, Steering and Models
1.2.2 Bicycle Control
1.2.3 Numerical Stabilization
1.2.4 Fuzzy-Logic Control
1.2.5 Sliding-Mode Control
1.3 Research Objective and Process

Chapter II: BICYCLE DYNAMICS MODEL
2.1 Unconstrained Equations of Motion
2.2 Constraint Equations
2.3 Simulation Parameter Sets
2.4 Model Validation

Chapter III: BICYCLE DYNAMICS SIMULATION
3.1 ODE-Formulation Methods
3.2 Numerical-Stabilization Methods

Chapter IV: ROLL-ANGLE-TRACKING CONTROL
4.1 PID Controller
4.2 Fuzzy-Logic Controller (FLC)
4.2.1 Constant-Speed Controller
4.2.2 Optimization of FLC Using Genetic Algorithms
4.3 Pole-Placement Controller (PPC)
4.3.1 Controller Design
4.3.2 Simulation Results
4.4 Sliding-Mode Controller (SMC)
4.4.1 Controller Design
4.4.2 Simulation Results

Chapter V: PATH-TRACKING CONTROL
5.1 Control without Path Preview
5.1.1 General Discussion
5.1.2 Controller with Only Distance Error
5.1.3 Controller with Both Distance and Direction Errors
5.1.4 Simulation Results and Comparison
5.2 Control with Path Preview
5.3 Variable-Speed Controller
5.4 Disturbance Rejection

Chapter VI: CONCLUSIONS AND PERSPECTIVES

REFERENCES

Appendix: CONSTRAINT JACOBIAN MATRIX
REFERENCES


