In this paper, a brushless DC (BLDC) motor is studied. We propose the detecting phase back-EMF sensorless controller architecture. This architecture combines analog hybrid digital-control and a control technology without sensor on brushless DC motor. Design of BLDC motor control of sensorless IC, brushless DC motor control is implemented by using Microchip Company PIC16F877 single-chip. In this study, we integrate key technologies including sensorless control technology, motor control chip design and motor drive power modules. The stationary position of rotor is first detected, and then the motor is accelerated until the back electromotive force is large enough. After this accelerating, the position of motor is estimated correctly in sensorless mode. In this method, no position sensors are required. Therefore the cost is reduced. Experimental results verify the feasibility of the proposed methods.

Keywords: brushless dc motor, back EMF (BEMF), sensorless control, motor control IC, motor drive power modules

Table of Contents

封面內頁 簽名頁 授權書 iii 中文摘要 iv 英文摘要 v 誌謝 vi 目錄 vii 圖目錄 x 表目錄 xiv 符號索引 xv 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 文獻回顧 3 1.4 研究的步驟 7 1.5 系統架構 8 1.6 內容大綱 9 1.7 本文特點與貢獻 10 第二章 無刷直流馬達控制原理 11 2.1 無刷直流馬達基本介紹 11 2.2 無刷直流馬達數學模型 11 2.3 馬達驅動方式 14 2.4 六步方波控制驅動方式 15 2.5 霍爾元件換相原理 24 第三章 無感測控制策略 28 3.1 量測馬達反電動勢 28 3.2 反電動勢估測法 31 3.3 無感控制啟動策略 32 3.4 靜止起動邏輯 34 第四章 無感測速度控制系統 37 4.1 無感測換相原理分析 37 4.2 電壓脈波寬度調變 38 4.3 轉速控制 42 第五章 實驗結果與討論 44 5.1 MPLAB IDE整合式開發環境 44 5.2 PIC16F877控制核心介紹 45 5.3 硬體建構與整合 49 5.3.1 驅動電路 51 5.3.2 無感測器電路 54 5.4 程式流程 55 5.5 裝感測器之驅動實驗結果分析 66 5.6 無感測器電路實驗結果分析 71 第六章 結論與未來展望 75 6.1 結論 75 6.2 未來展望 75 參考文獻 77 附錄A 85 附錄B 98 附錄C 103

REFERENCES

[1] 王秀和, 「永磁電機」，中國電力出版社，2007。
[3] 曾百由, 「數位訊號控制器原理與應用」，宏友出版社，2007。
[6] 劉添華、路承達, 「單相散熱風扇的無感轉軸偵測元件驅動及其積體電路晶片的研製」，電機月刊第十九卷第八期，2009，144-153。


