By Using of LCR and AFD Criteria for Studying the Dual Branch SC Schemes in Specified Fading Channels

游志忠、陳雍宗
E-mail: 211273@mail.dyu.edu.tw

ABSTRACT
In this paper we proposed the results of average LCR (level crossing rate) and AFD (average fading duration) criterions applied to evaluate the performance of dual-branch SC (selection combining) reception in the specified fading channels characterized as statistical distributions with correlated-Rayleigh and correlated-Rice models. Moreover, in order to unify and clarify the criterions of performance formulas with average LCR and AFD for SC diversity over different kinds of fading models, include such as Rayleigh, Rice, Nakagami-m, and Weibull distributions etc., almost all of the ever researched and published results from discussing about the LCR and AFD of SC diversity are comprehensively collected in this report. On the other hand, for the purpose of comparison, there are a large number of LCR and AFD performance formulas for SC diversity and the generalized fading statistic models are extracted and tabulated together, in which the cases of correlated and independent proprieties between diversity branches are taken into consideration too (some of the formulas are illustrated by the assumption of dual-branch SC diversity).

Keywords : SC reception、LCR、AFD、Rayleigh、Rice、Weibull、Nakagami-m distributed.

Table of Contents
第一章 緒論............................................ 1
1.1 研究背景與動機...............................4
1.2 論文大綱架構.................................7
第二章 無線通訊之衰落通道.............................. 8
2.1 電波傳輸現象.................................8
2.1.1 反射................................... 9
2.1.2 散射...................................9
2.2 一般衰落的分類..............................10
2.2.1 小尺度衰落.............................11
2.2.2 大尺度衰落.............................12
2.2.2.1 路徑損耗....................... 13
2.2.2.2 遮蔽效應.......................15
2.3 衰落通道之數學模型..........................16
2.4 常用通信通道統計分佈........................18
2.4.1 Normal(Gaussian)衰落分佈................19
2.4.2 Rayleigh 衰落分佈...................... 20
2.4.3 Rice 衰落分佈..........................22
2.4.4 Nakagami-m 衰落分佈............... 25
2.4.5 Weibull 衰落分佈........................28
第三章 平均？位跨越率與平均衰落區間................... 33
3.1 都卜勒(Doppler)效應..........................33
3.2 平均LCR與AFD .............................37
3.2.1 平均LCR與AFD之物理意義.............37
3.2.2 平均LCR與AFD之定義.................39
第四章 分集合成系統LCR與AFD之分析 ..................41
4.1 各種通道在未分集合成下之平均LCR 與AFD ....41
4.2 分集合成技術................................51
4.2.1 時間分集..............................52
4.2.2 空間分集..............................54
4.2.2.1 選擇性合成(Selection Combining) .....54
4.2.2.2 等增益合成(Equal Gain Combining) ...56
4.2.2.3 最大比例合成(Maximal-Ratio Combining) .....................57
4.3 分集合成後之效能通式........................58
4.3.1 選擇性分集合成後之平均LCR與AFD......59
4.3.1.1 獨立性分支...........................59
4.3.1.2 相關性分支...........................61
第五章 具獨立分支選擇性合成之平均LCR與AFD...........64
5.1 各種通道經由獨立性SC 之平均LCR及AFD......64
5.2 一般化之衰落通道的pdf與CDF之模數............67
5.3 工作於非平衡分支增益之相關Rician 衰落通道....71
5.4 數值分析結果................................72
第六章 具相關分支選擇性合成之平均LCR與AFD分析........82
6.1 Rayleigh 和Nakagami-m 相關性分支.............82
6.2 Weibull 相關性雙支.........................83
6.3 Rician 相關性分支............................86
6.4 數值分析結果................................89
第七章 結論............................................98

REFERENCES


